Problem Study (Binomial Theorem)


1.   Given that (p – 1 2 x)6 = r – 96x + sx2 + … , find p, r, s.

     Solution

      (p – 1 2 x)6 = r – 96x + sx2 + …

      Using binomial expansion,

      6C0 p6 + 6C1 p5 (- 1 2 x) + 6C2 p4 (- 1 2 x)2 + … = r – 96x + sx2 + …

     
        p6 + 6 p5 (- 1 2 x) + 15 p4 (- 1 2 x)2 + … = r – 96x + sx2 + …

      p6 – 3 p5 x +  15 4 p4 x2 + … = r – 96x + sx2 + …

      3p5 = 96

          p = 2

      r = p6 = 64

      s = 15 4 p4 = 15 4 (2)4 = 15 4 (16) = 60.

2The first three terms in the expansion of (a + b)n in  
      ascending powers of b are denoted by p, q and r 
      respectively. Show that  q 2 p r = 2 n n − 1 . Given that  
      p = 4, q = 32 and r = 96, evaluate n.

      Solution

      (a + b)n  = p + q + r + …

        nC0 an + nC1 an-1 b + nC2 an-2 b2 + … = p + q + r + …

      an + n an-1 + n ( n − 1 ) 2 an-2 b2 + … = p + q + r + …

     = an 

        q  = n an-1

           r  =  n ( n − 1 ) 2 a n − 2 b 2  

     ∴ q 2 p r = ( n a n − 1 ) 2 a n n ( n − 1 ) 2 a n − 2 b 2  

                 = 2 n 2 a 2 n − 2 b 2 n ( n − 1 ) a 2 n − 2 b 2  

                = 2 n n − 1      

         When p = 4, q = 32 and r = 96, 

          2 n n − 1 = 32 × 32 4 × 96

          2 n n − 1 = 8 3


          8n – 8 = 6n

         2n = 8

         n = 4

  3.     Using binomial theorem, find the coefficient of x2 
          in the expansion of (3 + x – 2x2)5.

          Solution 

             [3 + (x – 2x2)]5

            = 35 + 5 (34) (x – 2x2) + 10 (33) (x – 2x2)2 + … 

         = 35 + 405(x – 2x2) + 270 (x2 – 4x3 + 4x4) + … 

        The coefficient of x2 in the expansion of (3 + x – 2x2)5  

            = 405 (-2) + 270 

            = – 540

4.     Find the coefficient of x4 in the expansion of 

        (x2 – 5x + 12) ( x − 2 x ) 6 .

        Solution 

          (x2 – 5x + 12) ( x − 2 x ) 6  

       = (x2 – 5x + 12) ( x 6 − 6 x 5 ( 2 x ) + 15 x 4 ( 4 x 2 ) + . . . ) 

       = (x2 – 5x + 12) (x612x4  + 60x2 + . . . )

      The coefficient of x4 = 1(60) + 12 (-12) = – 84 

5.    In the expansion of (1 + x)(abx)12, the coefficient of

       x8 is zero. Find the value of the ratio a : b.

       Solution

         (1 + x)(abx)12 
      = (1 + x)(– bx + a)12
 
      = (1 + x) (12C0 (-bx)12 + 12C1  (-bx)11a +12C2 (-bx)10a2 + 12C3 (-bx)10a3

                           + 12C4 (-bx)9a4 + 12C5 (-bx)8a5+ 12C6 (-bx)7a6 + …) 
  
     ∴ The coefficient of x8 = 12C5 b8a5 –  12C6 b7a6

     By the problem,

     12C5 b8a5 12C6 b7a6 = 0 

    12C5 b8a5 = 12C6 b7a6

     12C5 b = 12C6 a  
      
    ∴ a b = 12 C 5 12 C 6  
            = 12 C 5 12 C 5 7 6  
            = 6 7
Problems Supported by : Sayar Tun Tun Aung

Problem Study (Arithmetic Progression)

1.    The Length of a perimeter of a hexagon is 36cm. The lengths the sides of the
       hexagon are in arithmetic progression and the length of the longest side is five times
       the length of the shortest side. Find the length of each side.

      Solution 

       Let the length of the sides of the hexagon in ascending order be u1, u2, u3, u4,
       u5 and u6.
       By the problem u1, u2, u3, u4, u5, u6 is an A.P.
       Let u1 = a,
             u2 = a + d
             u3 = a + 2d
             u4 = a + 3d
             u5 = a + 4d
             u6 = a + 5d
      Perimeter of the hexagon = 36 (given)
      Hence, 6a + 15d = 36
                 2a + 5d = 12 ………… (1)
      length of longest side = 5 ( length of shortest side)
      u6 = 5u1
         a + 5d = 5a
           4a – 5d = 0 ………….(2)
      Solving equation (1) and (2), a = 2 and d = 8 5  = 1.6
      u1 = a = 2 cm
      u2 = a + d = 3.6 cm
      u3 = a + 2d = 5.2 cm
      u4 = a + 3d = 6.8 cm
      u5 = a + 4d = 8.4 cm
      u6 = a + 5d = 10 cm

2.   The sum of n terms of an arithmetic progression is given by the formula Sn = 2n2 + n.
      Find (a) the first term, (b) the common difference and (c) the tenth term.

     Solution 

      Sn = 2n2 + n
      u1 = S1 = 2(1)2 + (1) = 3
       the first term = a = 3
      u1 + u2 = S2 = 2(2)2 + (2) = 10
      u2 = S2 – S1 = 7
      the common difference = d = u2 – u1 = 4
      un = a + (n – 1)d
      u10 = a + 9d= 3 + 9(4) = 39

3.   During 1996 a company increased its sales of television sets at a constant rate of 200
      sets per month. Thus the number of television sets sold in February was 200 more
      than in January, the number of television sets sold in March was 200 more than in
      February and this pattern continued month by month throughout the year. Given that
      the company sold 38, 400 television sets in 1996, calculate the number of television
      sets sold in (i) January,  (ii) December.

     Solution

      Let the number of television sets sold in January = a
      and those sold in December = u12.       
      ∴ d = 200, n = 12 and S12 = 38, 400
      S=  n 2   { 2a + (n – 1) d } 
      S12 = 38, 400
      ∴  12 2  (2a + 11 × 200) = 38,400 
      2a + 2,200  = 6,400
      a  =2100
      u= a + (n – 1)d 
      u12  = a + 11d = 2,100 + 11 (200) = 4,300
      Therefore there were 2,100 television sets sold in January and 4,300 sets in December.

4.   Find the sum of all numbers between 200 and 1,000 which are exactly divisible by 15.

     Solution

      All numbers between 200 and 1,000 which are exactly divisible by 15 are
      210, 225, 240, … , 990.
      Here the terms are in an A.P., with a = 210, d = 15 and l = u= 990.
      Since  u= a + (n – 1)d,  
      a + (n – 1)d = 990
      210 + (n – 1)(15) = 990
      n = 53 
      S= n 2 (a + l)
      S53  =  53 2  (210 + 990) = 31,800

Credit : Problems Supported by : Sayar Idea Zaw
     

Problem Study (Polynomial)

    When a polynomial f(x) is divided by (x – 1) and (x + 5),
    the remainders are -6 and 6 respectively. Let r(x be the
    remainder when f(x) is divided by x2 + 4x – 5. Find the  
    value of r(-2).   

Solution 

    By the problem,
    f(x) = p(x) (x – 1) – 6 …………(1)
    f(x) = q(x) (x + 5) + 6 …………(2)
    f(x) = Q(x) (x2 + 4x – 5) + r(x) …………(3) 
    (1) × (x + 5) ⇒ (x + 5) f(x) = p(x) (x – 1) (x + 5) – 6x – 30   
    (2) × (x – 1)  ⇒  (x – 1) f(x) = q(x) (x – 1) (x + 5) + 6x – 6 

    Subtracting the two equations,
    6 f(x) = [p(x) – q(x)] (x – 1) (x + 5) – 12x – 24
    Hence ,
    f(x) =  p ( x ) – q ( x ) 6 (x – 1) (x + 5) – 2x – 4 ——-(4)
    Comparing equations (3) and (4), we have
    r(x) = – 2x – 4
    Therefore, r (-2) = -2 (-2) – 4 = 0.

    Credit : Sayar U Pyi Kyaw

Polynomial (Part 2)

လက္ေတြဘ၀တြင္ အသံုး၀င္ေသာ Polynomial

Polynomial တစ္ခု ကို ေယ်ဘုယ် …


anx n +an – 1x n – 1 + … + a1x + a0  ေဖၚျပႏိုင္ေၾကာင္း ေျပာခ့ဲၿပီးပါၿပီ။
ဒီေနရာမွာ an , an – 1, … , a1 , a0 , တို႔ဟာ coefficients (ေျမႇာက္ေဖာ္ကိန္း) ေတြ ျဖစ္ၾကပါတယ္။ x ဆိုတာကေတာ့ variable (ကိန္းရွင္) ျဖစ္ၿပီးေတာ့ set of real numbers (ကိန္းစစ္ အစု) ထဲက မည္သည့္ real number မဆို ျဖစ္ႏိုင္ပါတယ္။ ဒါ့ေၾကာင့္ polynomial ဆိုတာ ကိန္းစစ္အစု ႏွစ္ခုၾကား ဆက္သြယ္ထားတဲ့ function တစ္ခုလို႔လဲ ေျပာလို႔ရပါတယ္။
f : R —-> R, f (x ) = anx n +an – 1x n – 1 + … + a1x + a0  လို႔ ေျပာႏိုင္တာေပါ့။ 

Polynomial ေတြ လက္ေတြ႕ေလာကမွာ သံုးလို႔ရလား၊ ဘယ္ေနရာေတြမွာ သံုးလဲ

 

ဆိုၾကပါဆို႔ ေသတၱာတစ္လံုးကို အနံ x cm ထားမယ္။ အလ်ားက အနံထက္ 3 cm ပိုၿပီး၊ အျမင့္က အနံေအာက္္ 2cm ေလ်ာ့မယ္ဆိုရင္…

အလ်ား = (x + 3) cm

အနံ = x  cm
အျမင့္ = (x – 2) cm ျဖစ္ပါမယ္။ ဒါဆိုရင္ …
ထုထည္ = အလ်ား × အနံ × အျမင့္ = (x + 3) x  (x – 2) = x 3 + x 2 – 6x  ဆိုၿပီး အနံတန္ဖိုး သိ႐ံုနဲ႔ ထုထည္ကို ရွာႏိုင္တဲ့ ပံုေသနည္း တစ္ခု ရၿပီေပါ့။ ၎ပံုေသနည္းဟာ polynomial တစ္ခု ျဖစ္တယ္ ဆိုတာ သိေလာက္ပါၿပီ။
အိုလံပစ္ အားကစားမွာ ပါ၀င္တဲ့ သံလံုးပစ္၊ လွံတံပစ္ အားကစားကို အားလံုးသိၿပီးသား ျဖစ္မွာပါ။ ပစ္လိုက္တဲ့ သံလံုး၊လွံတံေတြဟာ parabolic carve (ပါရာဗိုလာ မ်ဥ္းေကြး) အတိုင္း ေ႐ြ႕လ်ားသြားပါတယ္။ အားကစားသမားရဲ့ လက္ထဲမွာ ရွိေနစဥ္ သံလံုးဟာ ေျမျပင္အထက္ တစ္ေနရာ(s0) ႐ွိေနၿပီး စပစ္လိုက္တဲ့ အခ်ိန္မွာေတာ့ အလ်င္တစ္ခု (v0) ရ႐ွိသြားပါတယ္။ ေရြ႕လ်ားေနစဥ္ အခ်ိန္အတြင္းမွာ သံလံုးဟာ ကမာၻေျမ ဆြဲ႐ွိန္(g) ေၾကာင့္ တစ္သမတ္အျမင့္နဲ႔ ေ႐ြ႕လ်ားေနတာ မဟုတ္ပါဘူး။ ပစ္လိုက္တဲ့ အားတစ္ခုေၾကာင့္ ျမင့္တက္သြားၿပီး အျမင့္ဆံုးေနရာ ေရာက္တဲ့အခ်ိန္မွာ ကမာၻေျမ ဆြဲအားေၾကာင့္ ျပန္က်လာမွာ ျဖစ္ပါတယ္။ ဒီအခါမွာ သံလံုးေ႐ြ႕လ်ားေနစဥ္ ဘယ္အခ်ိန္ (t) မွာ ဘယ္ေလာက္ အျမင့္မွာ ရွိေနမလဲဆိုတာကို ပံုေသနည္း (formula) ထုတ္ၿပီး တြက္ယူႏိုင္ပါတယ္။ 

s0 = အားကစားသမား၏ အရပ္

v0 = သံလံုး၏ မူလ အလ်င္
g = ကမာၻေျမ ဆြဲရွိန္
t = အျမင့္ေနရာ တစ္ခုသို႔ သံလံုးေရာက္ရွိခ်ိန္ 
s = t အခ်ိန္တြင္ သံလံုးေရာက္ရွိေနသာ အျမင့္

s0, v0, g, t ဆိုသည့္ အခ်က္ အလက္မ်ားကို သိရွိပါက t အခ်ိန္တြင္ သံလံုးေရာက္ရွိေနသာ အျမင့္ကို ေအာက္ပါအတိုင္း တြက္ယူႏိုင္ပါသည္။



၎ပံုေသနည္းမွာ s ဆိုတာ t နဲ႔ တည္ေဆာက္ထားေသာ polynomial function တစ္ခု ျဖစ္တယ္ဆိုတာ သိေလာက္ၿပီလို႔ ယူဆပါတယ္။

Polynomial (Part -1)

Polynomial ဆိုတာ ကိန္းရွင္တစ္ခုရဲ့ အျပည့္ကိန္း ထပ္ကိန္းမ်ားသာ ပါ၀င္တဲ့ ကိန္းတန္းတစ္ခုေပါ့၊ ကိန္းလံုး တစ္ခုခ်င္းစီကို အေပါင္းအႏႈတ္ လကၡဏာေတြနဲ႔ ခ်ိတ္ဆက္ထားပါတယ္။ အဲဒီကိန္း တစ္ခုခ်င္းစီကို term လို႔ ေခၚပါတယ္။ Poly ဆိုတာ many လို႔ အဓိပၸာယ္ရၿပီး nomial ဆိုတာ terms လို႔ အဓိပၸါယ္ရပါတယ္။ ဒါ့ေၾကာင့္ လံုးေကာက္တိုက္႐ိုက္ ဘာသာျပန္လိုက္ရင္ polynomial ဆိုတာ many terms ေပါ့။
  •  2x5 – 5x3 – 10x + 9
  • 5x3 + 3x – 1
  • ax2 + bx +c 
  • 2x
  • 3
စတာေတြကို polynomial လို႔ ေခၚပါတယ္။ ဟာ ( 3x0 ျဖစ္လို႔ polynomial အျဖစ္ သတ္မွတ္ ႏိုင္ပါတယ္)
terms

 အထက္က ပံုမွာ ၾကည့္မယ္ဆိုရင္ ထပ္ကိန္းေတြ အဆင့္ဆင့္ေျပာင္းသြားတဲ့ x ကို ကိန္းရွင္ (variable ) လို႔ ေခၚပါတယ္။ variable ေရွ႕မွာ ေျမႇာက္ထားတဲ့ 4, 3, 7 တို႔ကိုေတာ့ ေျမႇာက္ေဖာ္ကိန္း (coefficients) ေတြ လို႔ ေခၚပါတယ္။ 7 ရဲ့ ေနာက္မွာ x0 ႐ွိတယ္လို႔ နားလည္ထားရပါမယ္။ x0 ဆိုတာ ထည့္ေရးဖို႔ မလိုတဲ့ အတြက္ေၾကာင့္ x0 ပါတဲ့ terms ကို ကိန္းေသ (constant term) လို႔ေခၚပါတယ္။ 

အထက္မွာ ေျပာခဲ့တဲ့အတိုင္း polynomial ရဲ့ ထပ္ကိန္းေတြဟာ အျပည့္ကိန္း (0, l , 2, 3, …) ပဲ ျဖစ္ရပါမယ္။  variable ရဲ့ အႀကီးဆံုးထပ္ကိန္း ကိုေတာ့ ၎ polynomial ရဲ့ order သို႔မဟုတ္ degree လို႔ေခၚပါတယ္။  
  •  2x5 – 5x3 – 10x + 9 (polynomial of order 5 (or) the fifth degree polynomial)
  • 5x3 + 3x – 1 (polynomial of order 3 (or) the third degree polynomial)
  • ax2 + bx +c (polynomial of order 2 (or) the second degree polynomial) 
Polynomial ရဲ့ ထပ္ကိန္းေတြဟာ အႏႈတ္ကိန္း (negative numbers) အပိုင္းကိန္း (fraction) မျဖစ္ရပါဘူး။ ေအာက္ပါကိန္းတန္းေတြကို polynomial လို႔ မသတ္မွတ္ႏိုင္ပါဘူး။


Polynomial တစ္ခုကို ေယ်ဘုယ် (general expression)  အေနနဲ႔ ေအာက္ပါအတိုင္း ေဖၚျပႏိုင္ပါတယ္။

polynomial general form

Problems Study

 

1. Functions f and g are such that  g-1 (x) = x  –  1 3  and (f ∘ g ) (x) = 3x – 1.
    Find (g -1 ∘ f ) (x) where x ∈ R.

   Solution 

   Let g -1(x ) = y then g (y) = x.
   Hence x – 1 3 = y
            x = y + 1 3
            g (y) = y + 1 3
            g (x) = x + 1 3
           (f ∘ g) (x) = 3x – 1
           f (g ) (x)   = 3x – 1
           f (x + 1 3)  = 3x – 1
                          = 3 (x + 1 3) – 2
   Hence f (x ) = 3x – 2
           (g -1 ∘ f ) (x) = g -1 ( f   (x ) )
                             = g -1 ( 3x – 2)
                             = 3x – 7 3

2. If x, y and z are any three consecutive even numbers, Show that x2 + y2 + z2 = 3y2 + 8.

   Solution 

   Let x = 2a where a is an integer.
   Since x, y and z are any three consecutive even numbers,
   y = 2a + 2 and z = 2a + 4
   x2 + y2 + z2 = (2a)2 + (2a + 2)2 + (2a + 4)2 
                     = 4a2 + 4a2 + 8a + 4 + 4a2 + 16a + 16
                     = 12a2 + 24a + 20
                     = 12a2 + 24a + 12 + 8
                     = 3 (4a2 + 8a + 4) + 8 
                     = 3 (2a + 2)2 + 8 
                     = 3 y2 + 8

2012 ပထမလပတ္ စာေမးပြဲ ေမးခြန္းနဲ႔ အေျဖ

မေရးတာ ၾကာၿပီ။ အခုျပန္ေရးပါတယ္။ အဓိကေတာ့ ေလ့က်င့္ခန္းေတြပဲ ဦးစားေပး တင္ပါေတာ့မယ္ အဆင္ေျပညီညြတ္တဲ့ အခါလည္း သခၤန္းစာေတြ ေရးမွာပါ။ အခု 2012 ပထမဦးဆံုး လပတ္ စာေမးပြဲ ေမးခြန္းနဲ႔ အေျဖကို တင္ေပးလိုက္ပါတယ္။ ေအာက္မွာေပးထားတဲ့ download link ေတြကေန ဆြဲယူႏိုင္ပါတယ္။

Grade (11)

Photobucket

Grade (10)

Photobucket


Synthetic Division

Polynomial ကိန္းတန္းတစ္ခုကို polynomial of first degree နဲ႔ စားတဲ့အခါ ရလာတဲ့ remainder အေၾကာင္းကို remainder theorem မွာ ေျပာျပခဲ့ၿပီးပါၿပီ။ Remainder Theorem အရ သိႏိုင္တာက အၾကြင္း (remainder) ပါပဲ။ စားလဒ္ (quotient) ကို သိခ်င္တယ္ဆိုရင္ ဘယ္လို လုပ္ရမလဲ။ ဥပမာ ေလးၾကည့္ရေအာင္။

p(x) = x3–7x–6 ကို x-4 နဲ႔ စားမယ္ဆိုရင္ remainder= p(4) ေပါ့။

p(4)= 43–7(4)–6 = 30 လို႔သိႏိုင္ပါတယ္။

ဒီေနရာမွာ p(x)=x3–7x–6 ကို dividend (တည္ကိန္း) လို႔ ေခၚပါတယ္။ x – 4 ကို စားကိန္း (divisor) လို႔ ေခၚပါတယ္။ p(4)=30 ကိုေတာ့ အၾကြင္း (remainder) လို႔ ေခၚပါတယ္။ remainder theorem အရ အလြယ္တကူ တြက္ထုတ္ႏိုင္တာက remainder value ပါပဲ။ စားလဒ္ (quotient) ကို လိုခ်ငိတယ္ဆိုရင္ေတာ့ ခ်စားရေတာ့မွာေပါ့။ ဒီလိုပါ။

အခုဆိုရင္ စားလဒ္က q(x)=x2+4x+9 ဆိုတာကို ရရွိမွာ ျဖစ္ပါတယ္။ တကၠသိုလ္၀င္တန္း ျပဌာန္းခ်က္ပါ သင္ရိုးအရ စားလဒ္ကို လိုခ်င္ရင္ ဒီလိုပဲ actual division နဲ႔ပဲ စားရမွာ ျဖစ္ပါတယ္။ ဒါေပမယ့္ multiple choice လို ေမးခြန္းမ်ိဳးအတြက္ စားလဒ္အေျဖကိုပဲ လိုတဲ့အခါ ဒီနည္းဟာ ရွည္လ်ားၿပီး အခ်ိန္ကုန္တာေပါ့။ ဒါဆိုရင္ ဘယ္လို လုပ္မလဲ။ စားလဒ္ေကာ အၾကြင္းကိုပါ အလြယ္တကူ ရွာႏိုင္တဲ့ synthetic division ကို သံုးၿပီး တြက္ထုတ္ ႏိုင္ပါတယ္။

အထက္က စားျပခဲ့တဲ့ polynomial ကိုပဲ ဥပမာအျဖစ္ တြက္ၾကည့္ရေအာင္။ x3–7x–6 ကို x – 4 နဲ႔ စားပါမယ္။

အဆင့္(၁)။ တည္ကိန္းရဲ့ terms ေတြမွာ ပါ၀င္တဲ့ ေျမွာက္ေဖၚကိန္းမ်ား (coefficients) ကို degree အလိုက္ အစဥ္လိုက္ ခ်ေရးပါမယ္။ လက္ရွိကိန္းတန္းမွာ ဆိုရင္ x2 ပါတဲ့ကိန္းလံုး (term in x2) မပါ၀င္တဲ့အတြက္ coefficient=0 လို႔ သတ္မွတ္ရမွာ ျဖစ္ပါတယ္။ စားကိန္း (in the form of x – k) မွာ ပါ၀င္တဲ့ constant term k (ဒီဥပမာမွာ ဆိုရင္ေတာ့ k=4 ေပါ့) ကို လည္း ေအာက္မွာ ျပထားသလို ေရးခ်လိုက္ပါ။

image

အဆင့္(၂)။ ပထမဦးဆံုးေတြ႕တဲ့ coefficient 1 ကို ျပထားသည့္အတိုင္း ဆြဲခ်လိုက္ပါ။ ၎ေနာက္ k တန္ဖိုးျဖစ္ေသာ 4 ႏွင့္ေျမွာက္ၿပီး ဒုတိယ column က 0 ေအာက္တြင္ ရလဒ္ကိုေရးပါ။

image

အဆင့္(၃)။ ဒုတိယ column မွ တန္ဖိုးမ်ားကို ေပါင္းပါ။ ရလဒ္ကို 4 ႏွင့္ေျမွာက္ၿပီး တတိယ column တြင္ ေရးပါ။ ထိုနည္း အတိုင္း column မ်ားကို ျဖည့္စြက္သြားပါ။

image

ေရွ႕ဆံုးဂဏန္းသံုးလံုး (1 4 9) သည္ စားလဒ္၏ coefficient မ်ား ျဖစ္ၿပီး 30 မွာ remainder ျဖစ္ပါတယ္္။ မူလ polynomial ၏ degree မွာ 3 ျဖစ္ေသာေၾကာင့္ စားလဒ္မွာ degree တဆင့္ေလွ်ာ့က်သြားပါမယ္။ ဒါေၾကာင့္ စားလဒ္က x2+4x+9 လို႔ အလြယ္တကူ သိႏိုင္ပါတယ္။ အခုေျပာခဲ့တဲ့ နည္းကို synthetic division လို႔ ေခၚပါတယ္။ long polynomial division နဲ႔ ခ်စားရန္ မလိုပဲ quotient ေကာ remainder ပါ အလြယ္တကူ သိႏိုင္တဲ့ နည္းတစ္ခုပါပဲ။

ေနာက္ထပ္ဥပမာ တစ္ပုစ္တြက္ၾကည့္ရေအာင္။

Example 1. Use synthetic division to divide 2x5 + 3x4 + 25x² − 1 by x + 3.

Dividend = p(x)= 2x5 + 3x4 + 25x² − 1 .

Divisor = x − k = x + 3 = x – (-3)

Therefore k = -3

image

Therefore the quotient is 2x4 − 3x3 + 9x² − 2x + 6 and the remainder is -19.

ဒီေလာက္ဆိုရင္ synthetic division ကို သေဘာေပါက္ေလာက္ပါၿပီ။

၅ျဖင့္ အဆံုးသတ္ေသာ ဆယ္ဂဏန္းမ်ား၏ ႏွစ္ထပ္ကိန္း

ဥပမာ 152 ဆိုပါစို႔ 15 x 15 = 225 ေပါ့၊ ကိန္းတန္ဖိုး ႀကီးလာရင္ အလြယ္မေျပာႏိုင္ေတာ့ဘူး လြယ္ပါတယ္။ calculator နဲ႔ တြင္ရင္ေပါ့။ calculator မပါပဲ အလြယ္ေျပာလို႔ရပါတယ္။

152 ကိုပဲ ေျပာၾကည့္ရေအာင္။ ခုဂဏန္း 5 ျဖင့္ဆံုးေသာေၾကာင့္ 25 ခ်ေရးပါ။ ဆယ္ဂဏန္းထက္ တစ္ႀကီးေသာ ကိန္းျဖင့္ေျမွာက္ပါ။ 1 ထက္ 1 ႀကီးေသာဂဏန္းမွာ 2 ျဖစ္တယ္။ ဒါ့ေၾကာင့္ 1×2=2 ေပါ့။ ဒါေၾကာင့္ 152=225။ ထိုနည္းအတိုင္း တြက္္ၾကည့္ရင္

square shortcut

152= 225
252= 625
352= 1225
452= 2025
552= 3025
652= 4225
752= 5625
852= 7225
952= 9025
1052=11025

ကဲ… ကိန္းဂဏန္းေတြရဲ့ လွ်ိဳ႕၀ွက္ခ်က္ေတြဟာ အံ့ၾသစရာ မေကာင္းဘူးလား။

Ways to describe functions

Function မ်ားကို ေဖၚျပႏိုင္ေသာ နည္းလမ္းမ်ား


ဒီတစ္ခါေတာ့ function ေတြကို ေဖၚျပႏိုင္တဲ့ နည္းလမ္းေတြကို ေျပာျပပါမယ္။

ဆိုၾကပါစို႔။ function f ဟာ A = {-3, -2, -1, 0, 1, 2, 3} နဲ႔ B = {-9, -6, -3, 0, 3, 6, 9} ကို f(x)=3x နဲ႔ ဆက္သြယ္ထားတဲ့ function တစ္ခု ျဖစ္ပါတယ္။ ဒီ function ရဲ့ ဆက္သြယ္ခ်က္ေတြ သိဖို႔ function ထဲမွာ အစားသြင္းၾကည့္ရေအာင္။

f(x) = 3x

f(-3) = 3(-3) = -9

f(-2) = 3(-2) = -6

f(-1) = 3(-1) = -1

f(0) = 3(0) = 0

f(1) = 3(1) = 3

f(2) = 3(2) = 6

f(3) = 3(3) = 9 ဆိုတဲ့ ဆက္သြယ္ခ်က္ေတြ ရတာေပါ့။

အဲဒီဆက္သြယ္ခ်က္ကို အလြယ္တကူ ထင္ရွား ျမင္သာေအာင္ ေဖၚျပႏိုင္တဲ့ နည္းလမ္းေတြ အေၾကာင္း ဆက္ရွင္းျပ ပါမယ္။


1. A verbal statement

အထက္က function ရဲ့ ဆက္သြယ္ခ်က္ကို ၾကည့္မယ္ဆိုရင္ x3x ျဖစ္တာေၾကာင့္ မူလတန္ဖိုးဟာ image ရဲ့ သံုးပံု တစ္ပံု ျဖစ္တယ္ဆိုတာကို သိၾကမွာ ျဖစ္ပါတယ္။ ဒါကို verbal statement နဲ႔ ေဖၚျပမယ္ဆိုရင္

A function from A to B : “is one-third of ” လို႔ ေျပာရမွာေပါ့။ အထက္က ဆက္သြယ္ခ်က္ကို verbal statement နဲ႔ ျပန္ခ်ေရးမယ္ ဆိုရင္-

-3 is one-third of -9
-2 is one-third of -6
-1 is one-third of -3
0 is one-third of 0
1 is one-third of 3
2 is one-third of 6
3 is one-third of 9 လို႔ ေျပာလို႔ရပါတယ္။

2. Arrow diagram

ဒီေဖၚျပပံု စနစ္ကေတာ့ ထင္ရွားျမင္သာၿပီး ရိုးရွင္းပါတယ္။ ဒါေပမယ့္ အကန္႔အသတ္နဲ႔သာ ရွိၿပီး တိတိက်က် ေဖၚျပႏိုင္တဲ့ အစု၀င္ေတြ ပါတဲ့ domain နဲ႔ codomain တို႔အတြက္သာ သင့္ေလ်ာ္ပါတယ္။ အခုလို ေဖၚျပပါတယ္။


3.A set of ordered pairs

Function တစ္ခုကို အစုနဲ႔ ေဖၚျပျခင္း ျဖစ္ပါတယ္။ Domain ထဲက အစု၀င္ (elements of domain) ေတြကို independent variables လို႔ေခၚၿပီး image ေတြကို dependent variables လို႔ ေခၚပါတယ္။ ordered pair တစ္ခုကို ေရးတဲ့အခါ (independent variables, dependent variables) လို႔ ေရးရပါတယ္။

အထက္မွာ ေဖၚျပခဲ့တဲ့ function ကို ျပန္ၾကည့္ရင္ –

(-3, -9), (-2, -6), (-1, -3), (0, 0), (1, 3), (2, 6), (3, 9) ဆိုတဲ့ ordered pairs ေတြကို ေတြ႔ရမွာ ျဖစ္ပါတယ္။ အစုဆိုတာက အစု၀င္ေတြကို တြန္႔ကြင္း { } ထဲမွာ ထည့္ေရးရတယ္ဆိုတာကို သိၿပီးျဖစ္မွာပါ။ ဒါ့ေၾကာင့္ ေျပာခဲ့တဲ့ function ကို set of ordered pairs နဲ႔ ေဖၚျပမယ္ဆိုရင္ –

A function from A to B = {(-3, -9), (-2, -6), (-1, -3), (0, 0), (1, 3), (2, 6), (3, 9)} လို႔ ေဖၚျပေပးရမွာ ျဖစ္ပါတယ္။


4. Table form

Function ေတြကို ေဖၚျပတဲ့ နည္းလမ္းေတြထဲက အသံုးမ်ားၿပီး အသံုး၀င္တဲ့ စနစ္တစ္ခုေပါ့။ စာရင္းဇယားဆိုတာ လုပ္ေဆာင္ခ်က္နဲ႔ ရလဒ္ေတြကို ႏႈိုင္းယွဥ္ၾကည့္တဲ့ စနစ္တစ္ခုပဲ မဟုတ္လား။ အထက္က function ကို table နဲ႔ ေဖၚျပမယ္ဆိုရင္ အခုလိုေဖၚျပရမွာ ျဖစ္ပါတယ္။


x -3 -2 -1 0 1 2 3
3x -9 -6 -3 0 3 6 9

5. Graph

အသံုးအမ်ားဆံုး နည္းလမ္းတစ္ခုပါပဲ။ လုပ္ငန္းတစ္ခုရဲ့ အတက္အက် လုပ္ေဆာင္ခ်က္တစ္ခုရဲ့ အသြင္သဏၭာန္၊ အေျခအေနကို အလြယ္တကူ ခန္႔မွန္းႏိုင္ဖို႔ graph ေတြဆြဲၿပီး ၾကည့္သလိုေပါ့။ လုပ္ငန္းေဆာင္ရြက္ခ်က္ေတြ ဆိုတာ တကယ္ေတာ့ function ေတြပါပဲ။


Graph ဆိုတာ ေရျပင္ညီ (x-axis) နဲ႔ ေဒါင္လိုက္ (y-axis) ၀င္ရိုးႏွစ္ခုနဲ႔ ဖြဲ႔စည္းထားတဲ့ ျပင္ညီ (Cartesian plain) ေပၚမွာ ဆက္သြယ္ခ်က္ရဲ့ တည္ေနရာေတြကို သတ္မွတ္ေပးလိုက္တာပါ။


Graph ဆြဲတဲ့ အခါ သတိထားရမွာက elements of domain (independent variables) ေတြက္ို x ၀င္ရိုးမွာ ထားရပါတယ္၊ elements of codomain (dependent variables) ေတြကိုေတာ့ y ၀င္ရိုးမွာ ထားပါတယ္။ Domain နဲ႔ Codomain ထဲမွာပါတဲ့ elements ေတြကို ၀င္ရိုးေတြေပၚမွာ အညီအမွ် အပိုင္းအျခား (same interval) သတ္မွတ္ ေပးရပါတယ္။ ဆက္သြယ္ခ်က္အတိုင္း ေနရာ (location) ကို သတ္မွတ္ေပးရပါတယ္။ အထက္က ေျပာခဲ့တဲ့ function ကို graph နဲ႔ ေဖၚျပမယ္ဆိုရင္ အခုလိုရရွိမွာ ျဖစ္ပါတယ္။ ဒီေနရာမွာ y=3x ျဖစ္ပါတယ္။


အခုေဖၚျပတဲ့ graph မွာ function ရဲ့ result ဟာ အမွတ္စက္ (point) ေတြ အျဖစ္သာ ရွိေနမွာပါ။ curve မဟုတ္ ပါဘူး။ ဘာေၾကာင့္လဲ ဆိုရင္ေတာ့ domain ထဲမွာရွိတဲ့ elements ၇ခုအတြက္ပဲ သတ္မွတ္ရတာ ျဖစ္လို႔ပါပဲ။


အကယ္၍ domain နဲ႔ codomain ဟာ A နဲ႔ B မဟုတ္ပဲ R (set of real numbers) ျဖစ္တယ္ဆိုပါစို႔။ ဆိုလိုတာက –

Function f:RR and f(x)=3x ေပါ့။


ဒါဆိုရင္ေတာ့ elements of domain ဟာ x ၀င္ရိုးေပၚမွာ ရွိတဲ့ အမွတ္တိုင္းကို ဆိုလိုတာ ျဖစ္ၿပီး၊ elements of codomain ဟာ y ၀င္ရိုးေပၚမွာရွိတဲ့ အမွတ္တိုင္းကို ဆိုလိုတာ ျဖစ္ပါတယ္။ အမွတ္တစ္ခုနဲ႔ တစ္ခုၾကားမွာ ေနရာလပ္ (interval or gap) ဆိုတာ မရွိေတာ့ဘူး။ ဒါေၾကာင့္ ရလာတဲ့ result ဟာ curve ျဖစ္လာတာေပါ့။ ေအာက္က graph ကို ၾကည့္ပါ။

f:RR and y=f(x)=3x ရဲ့ graph ပါ။

ေနာက္ထပ္ဥပမာတစ္ခုၾကည့္ရေအာင္…

A = {-3, -2, -1, 0, 1, 2, 3}

B = {x|-10 ≤ x ≤ 10, x is an integer.}

f : AB, y=f(x) = x2 အတြက္ graph ဆြဲမယ္ဆိုရင္ ေအာက္က ပံုအတိုင္းရမွာ ျဖစ္ပါတယ္။


f:RR, y=f(x) = x2 အတြက္ graph ဆြဲမယ္ဆိုရင္ေတာ့ အခုလို curve ပံုသဏၭာန္ ရမွာျဖစ္တယ္။


ဒါဆိုရင္ function ေတြကို ေဖၚျပပံုနည္းလမ္းမ်ားနဲ႔ graph ရဲ့ သေဘာသဘာ၀ကို နားလည္းႏိုင္ၿပီလို႔ ထင္ပါတယ္။